Additive-Free Formic Acid Dehydrogenation Catalyzed by a Cobalt Complex

02 September 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The reversible storage of hydrogen through the intermediate formation of Formic Acid (FA) is a promising solution to its safe transport and distribution. However, the common necessity of using bases or additives in the catalytic dehydrogenation of FA is a limitation. In this context, two new cobalt complexes (1 and 2) were synthesized with a pincer PP(NH)P ligand containing a phosphoramine moiety. Their reaction with an excess FA yields a cobalt(I)-hydride complex (3). We report here the unprecedented catalytic activity of 3 in the dehydrogenation of FA, with a turnover frequency (TOF) of 4000 h-1 and a turnover number (TON) of 454, without the need for bases or additives. A mechanistic study reveals that the ligand has a non-innocent behaviour due to intermolecular hydrogen bonding, which is influenced by the concentration of formic acid

Keywords

catalysis
formic acid
cobalt

Supplementary materials

Title
Description
Actions
Title
ESI
Description
Actions
Title
DFT Coordinates
Description
Actions
Title
CIF
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.