Quasi-3D Modeling of Li-ion Batteries Based on Single 2D Image

03 February 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In this work, we developed an advanced electrochemical physics-based simulation method for Li-ion batteries that enabled a quasi-3D simulation of charge/discharge using only a single 2D slice image. The governing equations are based on typical theories of electrochemical reactions and ion transport. From referencing the 2D plane, the model was able to simulate both the Li concentration in the active material and the Li-ion concentration in the electrolyte for their subsequent consideration in a virtual 3D structure. To confirm the validity of our proposed model, a full 3D discharge simulation with randomly packed active material particles was performed and compared with the results of the quasi-3D model and a simple-2D model. Results indicated that the quasi-3D model properly reproduced the sliced Li and Li-ion concentrations simulated by the full 3D model in the charge/discharge process, whereas the simple-2D simulation partially overestimated or underestimated these concentrations. Finally, we applied the model to an actual Scanning Electron Microscopy equipped with a Focused Ion Beam (FIB-SEM) image of a positive electrode.

Keywords

Li-ion battery
FIB-SEM
Simulation
physics-based method
particle packing

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.