Multiwavelets Applied to Metal-Ligand Interactions: Energies Free from Basis Set Errors

02 February 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The following article will be submitted to the Journal of Chemical Physics. It is thus not a peer-reviewed manuscript. After it is hopefully accepted for publication, it will be found (in revised form) at https://aip.scitation.org/journal/jcp

Transition metal-catalyzed reactions invariably include steps, where ligands associate or dissociate. In order to obtain reliable energies for such reactions, sufficiently large basis sets need to be employed. In this paper, we have used high-precision Multiwavelet calculations to compute the metal-ligand association energies for 27 transition metal complexes with common ligands such as H2, CO, olefins and solvent molecules. By comparing our Multiwavelet results to a variety of frequently used Gaussian-type basis sets, we show that counterpoise corrections, which are widely employed to correct for basis set superposition errors, often lead to underbinding. Additionally, counterpoise corrections are difficult to employ, when the association step also involves a chemical transformation. Multiwavelets, which can be conveniently applied to all types of reactions, provide a promising alternative for computing electronic interaction energies free from any basis set errors.

Keywords

Wavelets (Mathematics)
basis set
Interaction energies
transition metals M

Supplementary materials

Title
Description
Actions
Title
Supporting Information MWonTM 31012021
Description
Actions
Title
ALL GEOMETRIES
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.