Design of Pure Heterodinuclear Lanthanoid Cryptate Complexes

01 February 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Heterolanthanide complexes are difficult to synthesize owing to the similar chemistry of the lanthanide ions. Conse-quently, very few purely heterolanthanide complexes have been synthesized. This is despite the fact that such complexes hold inter-esting optical and magnetic properties. To fine-tune these properties, it is important that one can choose complexes with any given combination of lanthanides. Herein we report a synthetic procedure which yields pure heterodinuclear lanthanide cryptates LnLn*LX3 (X = NO3- or OTf-) based on the cryptand H3L = N[(CH2)2N=CH-R-CH=N-(CH2)2]3N (R = m-C6H2OH-2-Me-5). In the synthesis the choice of counter ion and solvent prove crucial in controlling the Ln-Ln*composition. Choosing the optimal solvent and counter ion affords pure heterodinuclear complexes with any given combination of Gd(III)-Lu(III) including Y(III). To demon-strate the versatility of the synthesis all dinuclear combinations of Y(III), Gd(III), Yb(III) and Lu(III) were synthesized resulting in 10 novel complexes of the form LnLn*L(OTf)3 with LnLn* = YbGd 1, YbY 2, YbLu 3, YbYb 4, LuGd 5, LuY 6, LuLu 7, YGd 8, YY 9 and GdGd 10. Through the use of 1H, 13C NMR and mass spectrometry the heterodinuclear nature of YbGd, YbY, YbLu, LuGd, LuY and YGd was confirmed. Crystal structures of LnLn*L(NO3)3 reveal short Ln-Ln distances of ~3.5 Å. Using SQUID magnetometry the exchange coupling between the lanthanide ions was found to be anti-ferromagnetic for GdGd and YbYb while ferromagnetic for YbGd.

Keywords

lanthanide 4 f
heterodinuclear
Magnetic Exchange
quantum information precessing

Supplementary materials

Title
Description
Actions
Title
Supporting Information Design of Pure Heterodinuclear Lanthanoid Cryptate Complexes
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.