Electrolytic Conversion of Bicarbonate Solutions to CO at >500 mA cm-2 and 2.2 V

01 February 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Electrolyzers that reduce carbon dioxide (CO2) into chemicals and fuels often use high-purity gaseous CO2 feedstocks that need to be isolated from upstream carbon capture units. If CO2 were to be captured directly from air, the eluent is likely to be an aqueous solution rich in bicarbonate ions (HCO3-). This scenario provides the impetus to electrolytically reduce these bicarbonate-rich carbon capture solutions into the same products as a CO2 electrolyzer. We report here an electrolyzer configuration that couples the conversion of bicarbonate to CO at the cathode with hydrogen oxidation at an anode. This unique system is capable of reaching a commercially-relevant current density of 500 mA cm-2 at merely 2.2 V, which is >0.5 V more efficient than any other reported electrolyzer that reduces HCO3- or CO2 at these current densities.

Keywords

CO2 reduction
hydrogen oxidation reactions

Supplementary materials

Title
Description
Actions
Title
2020 BZ HOR SI final
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.