Microwave-Assisted Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones Using Acid-Functionalized Mesoporous Polymer

01 February 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Synthesis and application of acid-functionalized mesoporous polymer catalyst for the synthesis of 3,4-Dihydropyrimidin-2(1H)-ones via Biginelli condensation reaction under microwave irradiation is investigated. Several analytical techniques such as FT-IR, BET, TEM, SEM and EDX were employed to characterize the synthesized polymeric catalyst. High acidity (1.15 mmol g-1 ), high surface area (90.44 m2 g -1 ) and mesoporous nature of the catalyst effectively promoted the synthesis of 3,4-Dihydropyrimidin-2(1H)-ones. Microwave irradiation shows higher yield (89-98 %) as compared to conventional heating (15-25 % yield) under our optimized reaction conditions such as 1:1:1.2 molar ratio of aldehyde/ethylacetoacetate/urea, catalyst loading of 6 wt.% (with respect to aldehyde), the temperature of 80 °C and microwave power of 50 W. The synthesized Biginelli products were fully characterized by 1H and 13C NMR. The reusability of the catalyst was investigated up to 5 successive cycles and it showed great stability towards the synthesis of 3,4-Dihydropyrimidin-2(1H)-ones without any significant depreciation in yields.

Keywords

Catalysis
polymer
mcr

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.