Sulfur Versus Nitrogen Chelation in C-H Activation: Cobalt(III)-Catalyzed Unsymmetrical Double Annulation of Thioamides

27 January 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

An unconventional cobalt(III)-catalyzed one-pot domino double annulation of aryl thioamides with unactivated alkynes is presented. Sulfur (S), nitrogen (N), and o,o'-C-H bonds of aryl thioamides are involved in this reaction, enabling access to rare 6,6-fused thiopyrano-isoquinoline derivatives. A reverse ‘S’ coordination over more conventional ‘N’ coordination of thioamides to Co-catalyst specifically regulates the formation of four [C-C and C-S at first and then C-N and C-C] bonds in a single operation, a concept which is uncovered for the first time. The power of the N-masked methyl phenyl sulfoximine (MPS) directing group in this annulation sequence is established. The transformation is successfully developed, building a novel chemical space of structural diversity (56 examples). In addition, late-stage annulation of biologically relevant motifs and drug candidates are disclosed (17 examples). Preliminary photophysical properties of thiopyrano-isoquinoline derivatives are discussed. Density functional theory (DFT) studies authenticate the participation of a unique 6p-electrocyclization of a 7-membered S-chelated cobaltacycle in the annulation process.

Keywords

Co(III)-catalysis
Double C-H activation
Thiopyrano-isoquinoline
Late-stage annulation
Photophysical study
Density Functional Theory

Supplementary materials

Title
Description
Actions
Title
Manuscript
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.