Reproducible Untargeted Metabolomics Data Analysis Workflow for Exhaustive MS/MS Annotation

18 January 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Unknown features in untargeted metabolomics and non-targeted analysis (NTA) are identified using fragment ions from MS/MS spectra to predict the structures of the unknown compounds. The precursor ion selected for fragmentation is commonly performed using data dependent acquisition (DDA) strategies or following statistical analysis using targeted MS/MS approaches. However, the selected precursor ions from DDA only cover a biased subset of the peaks or features found in full scan data. In addition, different statistical analysis can select different precursor ions for MS/MS analysis, which make the post-hoc validation of ions selected by new statistical methods impossible for precursor ions selected by the original statistical method. Here we propose an automated, exhaustive, statistical model-free workflow: paired mass distance-dependent analysis (PMDDA), for untargeted mass spectrometry identification of unknown compounds. By removing redundant peaks and performing pseudo-targeted MS/MS analysis on independent peaks, we can comprehensively cover unknown compounds found in full scan analysis using a “one peak for one compound” workflow without a priori redundant peak information. We show that compared to DDA, PMDDA is more comprehensive and robust against samples' matrix effects. Further, more compounds were identified by database annotation using PMDDA compared with CAMERA and RAMClustR. Finally, compounds with signals in both positive and negative modes can be identified by the PMDDA workflow, to further reduce redundancies. The whole workflow is fully reproducible as a docker image xcmsrocker with both the original data and the data processing template.

Keywords

metabolomics analyses
High Resolution Mass Spectrometry Metabolomic Profiles
Reproducible research, open science

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.