Norm-Conserving Pseudopotentials and Basis Sets to Explore Actinide Chemistry in Complex Environments

11 January 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We have developed a new set of norm-conserving pseudopotentials and companion Gaussian basis sets for the actinide (An) series (Ac - Lr) using the Goedecker, Teter and Hutter (GTH) formalism with the Perdew, Burke and Ernzerhof (PBE) exchange-correlation functional of generalized gradient approximation (GGA). To test the accuracy and reliability of the newly parameterized An-GTH pseudopotentials and basis sets, a variety of benchmarks on actinide-containing molecules are carried out and compared to all-electron and available experimental results. The new pseudopotentials include both medium- ([Xe]4f14) and large-core ([Xe]4f145d10) options that have successfully reproduced structures and energetics, particularly redox processes. The medium-core size set, in particular, reproduce all-electron calculations over multiple oxidation states from 0 to VII, whereas the large-core set is suitable only for the early series elements and low oxidation states. The underlying reason for these transferability issues are discussed in detail. This work fills a critical void in the literature for studying the chemistry of 5f-block elements in condensed phase.

Keywords

Actinide Chemistry
pseudopotential approach

Supplementary materials

Title
Description
Actions
Title
An-GTH-PP-SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.