De Novo Molecule Design Through Molecular Generative Model Conditioned by 3D Information of Protein Binding Sites

30 December 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

De novo molecule design through molecular generative model is gaining increasing attention in recent years. Here a novel generative model was proposed by integrating the 3D structural information of the protein binding pocket into the conditional RNN (cRNN) model to control the generation of drug-like molecules. In this model, the composition of protein binding pocket is effectively characterized through a coarse-grain strategy and the three-dimensional information of the pocket can be represented by the sorted eigenvalues of the coulomb matrix (EGCM) of the coarse-grained atoms composing the binding pocket. In current work, we used our EGCM method and a previously reported binding pocket descriptor DeeplyTough to train cRNN models and compared their performance. It has been shown that the molecules generated with the control of protein environment information have a clear tendency on generating compounds with higher similarity to the original X-ray bound ligand than normal RNN model and also achieving better performance in terms of docking scores. Our results demonstrate the potential application of EGCM controlled generative model for the targeted molecule generation and guided exploration on the drug-like chemical space.

Keywords

De Novo Molecule Design
structure-based drug design
molecular generative model

Supplementary materials

Title
Description
Actions
Title
Supporting Information-v6
Description
Actions
Title
Generative model BindingSites-v6
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.