Abstract
Terahertz vibrational spectroscopy has emerged as a powerful spectroscopic technique, providing valuable information regarding long-range interactions -- and associated collective dynamics -- occurring in solids. However, the terahertz sciences are relatively nascent, and there have been significant advances over the last several decades that have profoundly influenced the interpretation and assignment of experimental terahertz spectra. Specifically, because there do not exist any functional group or material-specific terahertz transitions, it is not possible to interpret experimental spectra without additional analysis, specifically, computational simulations. Over the years simulations utilizing periodic boundary conditions have proven to be most successful for reproducing experimental terahertz dynamics, due to the ability of the calculations to accurately take long-range forces into account. On the other hand, there are numerous reports in the literature that utilize gas phase cluster geometries, to varying levels of apparent success. This perspective will provide a concise introduction into the terahertz sciences, specifically terahertz spectroscopy, followed by an evaluation of gas phase and periodic simulations for the assignment of crystalline terahertz spectra, highlighting potential pitfalls and good practice for future endeavors.