Bio-inspired Artificial Helical Chromatophore for Stealth Mode

21 December 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Stealth technology has been very usefully applied in the military fields and is now becoming more prominent as a strategic technology. In nature, the firefly squid can protect itself from enemies using camouflage as a stealth mode. On the other hand, it is able to send fluorescent signals to attract prey by switching into a bright mode. Despite the development of many existing biomimetic materials, there are significant constraints related to their color-changeable velocity and mobility. Herein, we have developed a bio-inspired artificial thermochromic material system, which can reversibly switch between stealth and bright modes and thus provide a means to adapting to one’s environment analogous to the strategy applied by firefly squids. Through vertical contraction, a helically coiled yarn artificial muscle, selectively coated by Rhodamine B and TiO2, can switch between fluorescent and stealth modes with a maximum speed of 0.31 cm/s. Upon external thermal impulse, artificial thermochromic muscle can spin up to 309° and achieve a negative strain of 84.6%. In addition, this research demonstrates thermochromic effects even in underwater aqueous conditions, showing applicability toward underwater robotics. With the cost-effectiveness of the demonstrated system, the developed artificial thermochromic muscles can be implemented into a variety of applications, such as colorimetric sensors and aqueous color-changeable soft robotics.

Keywords

Artificial Muscle
Helical Structure
Chromatophore
Illumination
Biomimetic material

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.