Spatial Segmentation of Mass Spectrometry Imaging Data by Combining Multivariate Clustering and Univariate Thresholding

21 December 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Spatial segmentation partitions mass spectrometry imaging (MSI) data into distinct regions providing a concise visualization of the vast amount of data and identifying regions of interest (ROIs) for downstream statistical analysis. Unsupervised approaches are particularly attractive as they may be used to discover the underlying subpopulations present in the high-dimensional MSI data without prior knowledge of the properties of the sample. Herein, we introduce an unsupervised spatial segmentation approach, which combines multivariate clustering and univariate thresholding to generate comprehensive spatial segmentation maps of the MSI data. This approach combines matrix factorization and manifold learning to enable high-quality image segmentation without an extensive hyperparameter search. In parallel, some ion images inadequately represented in the multivariate analysis are treated using univariate thresholding to generate complementary spatial segments. The final spatial segmentation map is assembled from segment candidates generated using both techniques. We demonstrate the performance and robustness of this approach for two MSI data sets of mouse uterine and kidney tissue sections acquired with different spatial resolutions. The resulting segmentation maps are easy to interpret and project onto the known anatomical regions of the tissue.

Keywords

mass spectrometry imaging data
Multivariate analysis
spatial segmentation
Unsupervised Feature Selection

Supplementary materials

Title
Description
Actions
Title
SI - MSI Image Segmentation
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.