Abstract
Protein-based biological materials are important role models for the design and fabrication of next generation advanced polymers. Marine mussels (Mytilus spp.) fabricate hierarchically structured collagenous fibers known as byssal threads via bottom-up supramolecular assembly of fluid protein precursors. The high degree of structural organization in byssal threads is intimately linked to their exceptional toughness and self-healing capacity. Here, we investigated the hypothesis that multidomain collagen precursor proteins, known as preCols, are stored in secretory vesicles as a colloidal liquid crystal (LC) phase prior to thread self-assembly. Using advanced electron microscopy methods, including scanning TEM and FIB-SEM, we visualized the detailed smectic preCol LC nanostructure in 3D, including various LC defects, confirming this hypothesis and providing quantitative insights into the mesophase structure. In light of these findings, we performed an in-depth comparative analysis of preCol protein sequences from multiple Mytilid species revealing that the smectic organization arises from an evolutionarily conserved ABCBA penta-block co-polymer-like primary structure based on demarcations in hydropathy and charge distribution, as well as terminal pH-responsive domains
that trigger fiber formation. These distilled supramolecular assembly principles provide inspiration and strategies for sustainable assembly of nanostructured polymeric materials for
potential applications in engineering and biomedical applications.
that trigger fiber formation. These distilled supramolecular assembly principles provide inspiration and strategies for sustainable assembly of nanostructured polymeric materials for
potential applications in engineering and biomedical applications.
Supplementary materials
Title
Jehle ChemrXiv Supp
Description
Actions
Title
Video S1
Description
Actions
Title
Video S2
Description
Actions
Title
Video S3
Description
Actions
Title
Video S4
Description
Actions
Title
Video S5
Description
Actions
Title
Video S6
Description
Actions