Abstract
Combining on-surface synthetic methods with the power of scanning tunneling microscopy to characterize novel materials at the single molecule level, we show how to steer the reactivity of one anthracene-based precursor towards different product nanostructures. Whereas using a two-dimensional Au(111) surface results in the dominant formation of a starphene derivative, the templating effect of a reconstructed Au(110) surface allows the selective growth of non-benzenoid linear conjugated polymers. We further assess the electronic properties of each of the observed product structures via tunneling spectroscopy and DFT calculations, altogether advancing in the synthesis and characterization of molecular structures of notable scientific interest that have been only scarcely investigated to date, as applied to both starphenes and to non-benzenoid conjugated polymers.