Adaptive pixel mass recalibration for mass spectrometry imaging based on locally endogenous biological signals.

03 December 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Mass spectrometry imaging (MSI) is a powerful and convenient method for revealing the spatial chemical composition of different biological samples. Molecular annotation of the detected signals is only possible if a high mass accuracy is maintained over the entire image and the m/z range. However, the heterogeneous molecular composition of biological samples could lead to small fluctuations in the detected m/z-values, called mass shift. The use of internal calibration is known to offer the best solution to avoid, or at least to reduce, mass shifts. Their “a priori” selection for a global MSI acquisition is prone to false positive detection and therefore to poor recalibration. To fill this gap, this work describes an algorithm that recalibrates each spectrum individually by estimating its mass shift with the help of a list of pixel specific internal calibrating ions, automatically generated in a data-adaptive manner (https://github.com/LaRoccaRaphael/MSI_recalibration). Through a practical example, we applied the methodology to a zebrafish whole body section acquired at high mass resolution to demonstrate the impact of mass shift on data analysis and the capability of our algorithm to recalibrate MSI data. In addition, we illustrate the broad applicability of the method by recalibrating 31 different public MSI datasets from METASPACE from various samples and types of MSI and show that our recalibration significantly increases the numbers of METASPACE annotations (gaining from 20 up to 400 additional annotations), particularly the high-confidence annotations with a low false discovery rate.

Keywords

recalibration strategy
Mass Spectrometry Imaging Data
annotation analysis

Supplementary materials

Title
Description
Actions
Title
SI Adaptive pixel mass recalibration for mass spectrometry imaging based on locally endogenous biological signals.
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.