Ten Essential Delocalization Learning Outcomes: How Well Are They Achieved?

09 December 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Delocalization (resonance) is a concept in organic chemistry that influences the chemical reactivity, structure, and physical properties of molecules. However, the concept has proven challenging for students and the related learning outcomes had previously been only vaguely defined. We recently defined ten essential learning outcomes about delocalization that a student should be able to demonstrate by the end of a two-course organic chemistry sequence. The goal of the present study was to investigate to what extent the ten LOs were achieved by students, as well as the connections between the LOs. We analyzed three exam questions related to seven of the ten LOs for the degree of achievement, common errors, and scientific reasoning. We found that students sometimes struggled to identify when delocalization could occur, that some of the LOs built on one another, and that students were more successful in drawing resonance structures when explicitly asked, but less successful when the requirement was implicit or embedded within a mechanism. Our analysis of student reasoning showed that the dominant modes of reasoning were aligned with the related expectations and explanations in the course. When asked to justify the contribution of resonance structures to the resonance hybrid, most answers used a descriptive mode of reasoning; when asked to explain why a given proton was more acidic than another, most answers contained relational and linear causal reasoning. Implications for research and practice are discussed.

Keywords

chemistry education research
Organic chemistry
Resonance theory
Delocalization
Assessment
Learning Outcomes
Qualitative analysis
Quantitative analysis

Supplementary materials

Title
Description
Actions
Title
ChemRxiv Supporting Information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.