Air-Carbon Ablation Model for Hypersonic Flight from Molecular Beam Data

01 December 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Recent molecular beam experiments of high velocity O, N, and O2 impacting carbon material at high temperature produced detailed surface chemistry data relevant for carbon ablation processes. New data on O and N reactions with carbon has been published using a continuous molecular beam with lower velocity (2000 m/s) and approximately 500 times higher beam flux than previous pulsed-beam experiments. This data is interpreted to construct a new air-carbon ablation model for use in modeling carbon heat shield ablation. The new model comprises 20 reaction mechanisms describing reactions between impinging O, N, and O2 species with carbon and producing scattered products including desorbed O and N, O2 and N2 formed by surface-catalyzed recombination, as well as CO, CO2, and CN. The new model includes surface-coverage dependent reactions and exhibits non-Arrhenius reaction probability in agreement with experimental observations. All reaction mechanisms and rate coefficients are described in detail and each is supported by experimental evidence or theory. The model predicts pressure effects and is tested for a wide range of temperatures and pressures relevant to hypersonic flight. Model results are shown to agree well with available data and are shown to have significant differences compared to other models from the literature.

Keywords

ablation
carbon oxidation
carbon nitridation
molecular beam experiments
gas-surface interactions

Supplementary materials

Title
Description
Actions
Title
Air Carbon Ablation Model - Elsevier
Description
Actions
Title
Graphical Abstract
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.