Harnessing Plasma Environments for Ammonia Catalysis: Mechanistic Insights from Experiments and Large-Scale Ab-initio Molecular Dynamics

01 December 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

By combining experimental measurements with ab initio molecular dynamics simulations, we provide the first microscopic description of the interaction between metal surfaces and a low-temperature nitrogen-hydrogen plasma. Our study focuses on the dissociation of hydrogen and nitrogen as the main activation route. We find that ammonia forms via an Eley-Rideal mechanism where atomic nitrogen abstracts hydrogen from the catalyst surface to form ammonia on an extremely short timescale (a few picoseconds). On copper, ammonia formation occurs via the interaction between plasma-produced atomic nitrogen and the H-terminated surface. On platinum, however, we find that surface saturation with NH groups is necessary for ammonia production to occur. Regardless of the metal surface, the reaction is limited by the mass transport of atomic nitrogen, consistent with the weak dependence on catalyst material that we observe and has been reported by several other groups. This study represents a significant step towards achieving a mechanistic, microscopic-scale understanding of catalytic processes activated in low-temperature plasma environments.

Keywords

ammonia catalysis
plasma ammonia
catalysis
plasma
dft
density functional theory
ab initio molecular dynamics
metal surface catalysts

Supplementary materials

Title
Description
Actions
Title
Sharma-Mangolini-SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.