Mitochondria-Targeted Inhibitors of the Human SIRT3 Lysine Deacetylase

18 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Sirtuin 3 (SIRT3) is the major protein lysine deacetylase in the mitochondria. This hydrolase regulates a wide range of metabolically involved enzymes and has been considered as a potential drug target in certain cancers. Investigation of pharmacological intervention has been challenging due to a lack of potent and selective inhibitors of SIRT3. Here, we developed a strategy for selective inhibition of SIRT3 in cells, over its structurally similar isozymes that localize primarily to nucleus (SIRT1) and cytoplasm (SIRT2). This was achieved by directing the inhibitors straight to the mitochondria through incorporation of sequences inspired by previously described mitochondria-targeting peptides. Our inhibitors exhibited excellent mitochondrial localization in HeLa cells as indicated by fluorophore-conjugated versions and target engagement was demonstrated by a thermal shift assay of SIRT3 using western blotting. The acetylation state of documented SIRT3 target MnSOD was shown to be perturbed in cells with little effect on known targets of SIRT1 and SIRT2, showing that our lead compound exhibits selectivity for SIRT3 in cells. We expect that the developed inhibitor will now enable a more detailed investigation of SIRT3 as a potential drug target and help shed further light on the diverse biology regulated by this enzyme.

Keywords

Situins
SIRT3
histone deacetylase inhibitors
mitochondrial targeting
cell penetrating peptides

Supplementary materials

Title
Description
Actions
Title
SIRT3-Inhibitors-SI-ChemRxiv
Description
Actions
Title
TOC-SIRT3i
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.