Design, Synthesis, and Evaluation of Transition-State Analogs as Inhibitors of the Bacterial Quorum Sensing Autoinducer Synthase CepI

12 November 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Quorum sensing is a bacterial signaling system that involves the synthesis and subsequent detection of small signal molecules called autoinducers. The main autoinducer in gram-negative bacteria are acylated homoserine lactones (AHLs), produced by LuxI autoinducer synthase enzymes and detected by LuxR autoinducer receptors. Quorum sensing allows for changes in gene expression resulting bacterial behavior in a coordinated, cell-density dependent fashion. Some of the behaviors controlled by quorum sensing involve pathogenesis, making quorum sensing signaling a target to develop new antibacterial agents. Here we describe the design and synthesis of transition-state analogs of the autoinducer synthase enzymatic reaction and the evaluation of these compounds as inhibitors of the synthase CepI. One such compound potently inhibits CepI and constitutes a new type of inhibitor against this underdeveloped antibacterial target.

Keywords

Quorum sensing
Enzyme inhibitor
Transition-state analog

Supplementary materials

Title
Description
Actions
Title
Higgins et al Supporting information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.