Low Electronic Conductivity of Li7La3Zr2O12 (LLZO) Solid Electrolytes from First Principles

29 October 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Lithium-rich garnets such as Li7 La3 Zr2 O12 (LLZO) are promising solid electrolytes with potential applications in all–solid-state lithium-ion batteries. The practical use of lithium-garnet electrolytes is currently limited by pervasive lithium-dendrite growth during battery cycling, which leads to short-circuiting and cell failure. One proposed mechanism for dendrite growth is the reduction of lithium ions to lithium metal within the electrolyte. Lithium garnets have been proposed to be susceptible to this growth mechanism due to high electronic conductivities [Han et al. Nature Ener. 4 187, 2019]. The electronic conductivities of LLZO and other lithium-garnet solid electrolytes, however, are not yet well characterised. Here, we present a general scheme for calculating the intrinsic electronic conductivity of a nominally-insulating material under variable synthesis and operating conditions from first principles, and apply this to the prototypical lithium-garnet LLZO. Our model predicts that under typical battery operating conditions, electron and hole carrier-concentrations in bulk LLZO are negligible, irrespective of initial synthesis conditions, and electron and hole mobilities are low (<1 cm2 V−1 s−1 ). These results suggest that the bulk electronic conductivity of LLZO is not sufficiently high to cause bulk lithium-dendrite formation during cell operation. Any non-negligible electronic conductivity in lithium garnets is therefore likely due to extended defects or surface contributions.

Keywords

Batteries
DFT
Materials Modelling
LLZO
Garnet Solid Electroyltes
Defects
Electronic Conductivity

Supplementary materials

Title
Description
Actions
Title
llzo toc
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.