Ultralong Organic Room-Temperature Phosphorescence of Electron-donating and Commercially Available Host and Guest Molecules through Efficient Förster Resonance Energy Transfer

27 October 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Ultralong organic room-temperature phosphorescence (RTP) materials have attracted great attention recently due to its diverse application potentials. Several ultralong organic RTP materials mimicking the host-guest architecture of inorganic systems have been exploited successfully. However, complicated synthesis and high expenditure are still inevitable in these cases. Herein, we develop a series of novel host–guest organic phosphore systems, in which all chromophores are electron-rich, commercially available and halogen atom free. The maximum phosphorescence efficiency and the longest lifetime reach at 23.6% and 362 ms, respectively. Most importantly, experimental results and theoretical calculation indicate that the host molecules not only play a vital role in providing a rigid environment to suppress non-radiative decay of the guest, but also show a synergistic effect to the guest through Förster energy transfer (FERT). The commercial availability, facile preparation and unique properties also make these new host-guest materials an excellent candidate for anti-counterfeiting devices.

Keywords

room-temperature phosphorescence
host-guest system
Förster resonance energy transfer
commercial luminogen
anti-counterfeiting

Supplementary materials

Title
Description
Actions
Title
Manuscript-20201025
Description
Actions
Title
Supporting Information-20201025
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.