A Chemical Map of NaSiCON Electrode Materials for Sodium-ion Batteries

27 October 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Na-ion batteries are promising devices for smart grids and electric vehicles due to cost effectiveness arising from the overall abundance of sodium (Na) and its even geographical distribution. Among other factors, the energy density of Na-ion batteries is limited by the positive electrode chemistry. NaSICON-based positive electrode materials are known for their wide range of electrochemical potentials,[1],[2],[3] high ionic conductivity, and most importantly their structural and thermal stabilities. Using first- principles calculations, we chart the chemical space of 3d transition metal-based NaSICON phosphates of formula NaxMM’(PO4)3 (with M and M’= Ti, V, Cr, Mn, Fe, Co and Ni), to analyze their thermodynamic stabilities and the intercalation voltages for Na+ ions. Specifically, we computed the Na insertion voltages and related properties of 28 distinct NaSICON compositions. We investigated the thermodynamic stability of Na-intercalation in previously unreported NaxMn2(PO4)3 and NaxVCo(PO4)3. The calculated quaternary phase diagrams of the Na-P-O-Co and Na-P-O-Ni chemical systems explain the origin of the suspected instability of Ni and Co-based NaSICON compositions. From our analysis, we are also able to rationalize anomalies in previously reported experimental data in this diverse and important chemical space.

Keywords

Na-ion batteries (NIBs)
Sodium-Ion Battery Cathodes
NASICON-type material
NASICON electrodes
Density Function Theory
High-throughput calcualtions
First-Principle Calculations

Supplementary materials

Title
Description
Actions
Title
SI NaSiCON map
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.