Abstract
We investigate PdCu and PdAg catalysts in the context of oxygenate upgrading for biofuels. To this end, we measure the rates of decarbonylation and hydrogenation of butyraldehyde, the reactive intermediate for the industrially relevant Guerbet condensation, and correlate the selectivity and reactivity with the properties of the catalysts via a range of characterization efforts. Data obtained from EXAFS and XANES show that the bulk of the catalyst metallic nanoparticles is enriched in Pd, while the surface is enriched in Cu and Ag. The data for PdCu show clear dominance of geometric (ensemble) effects on the selectivity. Conversely, the electronic (ligand) effects of alloying dominate over the reaction rate of the catalysts, as electron donation from Cu to Pd promotes the Cu and increases the desired (de)hydrogenation reactions. In contrast, in PdAg catalysts, the weaker electronic exchange, as indicated by Pd L edge XANES and theoretical calculations, is not sufficient to promote Ag, resulting in monotonic loss of activity with increasing Ag content and without selectivity improvement. We use the implications of these findings to provide valuable design principles for oxygenate catalysis and to discover a highly selective bifunctional catalyst system, comprised of a PdCu alloy catalyst and titanium dioxide for the upgrading of ethanol to longer-chain oxygenates.
Supplementary materials
Title
Bathena oxygenates SI
Description
Actions