Molybdenum Trioxide on Anatase TiO2(101) - Formation of Monodispersed (MoO3)1 Monomers from Oligomeric (MoO3)n Clusters

05 October 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Complex oxide systems with hierarchical order are of critical importance in material science and catalysis. Despite their immense potential, their design and synthesis are rather difficult. In this study we demonstrate how the deposition of small oligomeric (MoO3)1-6 clusters, which can be formed by the sublimation of MoO3 powders, leads to the formation of locally ordered layers of (MoO3)1 monomers on anatase TiO2(101). Using both high-resolution imaging and theoretical calculations, we show that at room temperature, such oligomers undergo spontaneous dissociation to their monomeric units. In initial stages of the deposition, this is reflected by the observation of one to six neighboring (MoO3)1 monomers that parallel the size distribution of the oligomers. A transient mobility of such oligomers on both bare TiO2(101) and (MoO3)1 covered areas is key to the formation of a complete layer with a saturation coverage of one (MoO3)1 per two undercoordinated surface Ti sites. We further show that such layers are stable to 500 K, making them highly suitable for a broad range of applications.

Keywords

molybdenum trioxide
cyclic molybdenum trioxide
molybdenum trioxide monomers
Lewis acid and base
dissociation

Supplementary materials

Title
Description
Actions
Title
(MoO3)3 Dis 1000K
Description
Actions
Title
(MoO3)3 Dis 2000K
Description
Actions
Title
Deposition and Structure of MoO3 Clusters on Anatase TiO2 (101) SI - 2020-08-13-clean
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.