Quantifying Uncertainties in Solvation Procedures for Modeling Aqueous Phase Reaction Mechanisms

05 October 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Computational quantum chemistry modeling provides fundamental chemical and physical insights into solvated reaction mechanisms across many areas of chemistry, especially in homogeneous and heterogeneous renewable energy catalysis. Such reactions may depend on explicit interactions with ions and solvent molecules that are non-trivial to characterize. Rigorously modeling explicit solvent effects with molecular dynamics usually brings steep computational costs while the performance of continuum solvent models such as polarizable continuum model (PCM), nonlocal solvent models with charge asymmetry (CANDLE), conductor-like screening model for real solvents (COSMO-RS) and effective screening medium method with the reference interaction site model (ESM-RISM) are less well understood for reaction mechanisms. Here, we revisit a fundamental aqueous phase hydride transfer reaction, carbon dioxide (CO2) reduction by sodium borohydride (NaBH4), as a test case to evaluate how different solvent models perform in aqueous phase charge migrations that would be relevant in general to renewable energy catalysis mechanisms. For this system, quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations almost exactly reproduced energy profiles from all-QM simulations, and the Na+ counterion in the QM/MM simulations plays an insignificant role over ensemble averaged trajectories that describe the reaction pathway.
However, solvent models used on static calculations gave much more variability in data depending on whether the system was modeled using explicit solvent shells and/or the counter ion. We pinpoint this variability due to unphysical descriptions of charge-separated states in the gas phase (i.e., self-interaction errors), and we show that using more accurate hybrid functionals and/or explicit solvent shells will lessens these errors and allow more reliable results to be obtained.
This work closes with recommended procedures for treating solvation in future computational efforts in studying renewable energy catalysis mechanisms.

Keywords

ESM-RISM
COSMO-RS
continuum solvation models
sodium borohydride
CO2

Supplementary materials

Title
Description
Actions
Title
SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.