Abstract
The ever-growing demand for fluorogenic dyes usable in the rapid construction of analyte-responsive fluorescent probes, has recently contributed to a revival of interest in the chemistry of diketopyrrolopyrrole (DPP) pigments. In this context, we have explored the potential of symmetrical and unsymmetrical DPP derivatives bearing two or one 4-pyridyl substituents acting as optically tunable group(s). The unique fluorogenic behavior of these molecules, closely linked to N-substitution/charge state of their pyridine unit (i.e., neutral pyridine or cationic pyridinium), has been used to design DPP-based fluorescent probes for detection of hypoxia-related redox enzymes and penicillin G acylase (PGA). In this paper, we describe synthesis, spectral characterization and bioanalytical validations of these probes. Dramatic differences in terms of aqueous stability and enzymatic fluorescence activation were observed. This systematic study enables to delineate the scope of application of pyridine-flanked DPP fluorophores in the field of enzyme biosensing.
Supplementary materials
Title
Publication-SJ01-FP03-Preprint-SI-VF
Description
Actions