Ultra-high Yield On-surface Synthesis and Assembly of Circumcoronene into Chiral Electronic Kagome-honeycomb Lattice

15 September 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

On-surface synthesis has revealed remarkable potential in the fabrication of a plethora of elusive nanographenes with tailored structural, electronic and magnetic properties unattainable by conventional wet-chemistry synthesis. Unfortunately, surface-assisted synthesis often involves multiple-step cascade reactions with competing pathways, leading to the formation of a diversity of products with limited yield, which reduces its feasibility towards the large-scale production for future technological applications. Here, we devise a new on-surface synthetic strategy for the ultra-high yield synthesis of a hexagonal nanographene with six zigzag edges, namely circumcoronene on Cu(111) via surfaceassisted intramolecular dehydrogenation of the rationally-designed precursor molecule, followed by methyl radical-radical coupling and aromatization. An elegant electrostatic interaction between circumcoronene and Cu(111) drives their self-organization into an extended superlattice, as revealed by bond-resolved low-temperature scanning probe microscopy and spectroscopy measurements. Density functional theory and tight-binding calculations reveal that unique hexagonal zigzag topology of circumcoronenes, along with their periodic electrostatic landscape confines two-dimensional (2D) electron gas in Cu(111) surface into chiral electronic Kagome-honeycomb lattice with two emergent electronic flat bands. Our findings open up a new route for the high-yield fabrication of elusive nanographenes with zigzag topologies and their novel 2D superlattices with possible nontrivial electronic properties towards their future technological applications.

Keywords

on-surface synthesis
circumcoronene
non-contact atomic force microscopy
Kagome-honeycomb lattice

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.