Understanding the Solid-State Assembly of Pharmaceutically-Relevant N,N-Dimethyl-O-Thiocarbamates in the Absence of Labile Hydrogen Bonds

14 September 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

There are many pharmaceutical compounds that do not contain N-H, O-H, and S-H hydrogen-bond donor functional groups. Some of these compounds are N,N-disubstituted O-thiocarbamates which exhibit desirable medicinal properties, yet the study of these important molecules in the solid-state has been relatively unexplored. Herein, we report the synthesis and analysis of a series of N,N-dimethyl-O-thiocarbamates, and use X-ray diffraction techniques to gain insight into how these molecules self-assemble in the solid-state and discern certain packing patterns. It was observed that the aryl-thiocarbamate C-O bonds are twisted such that the planar aryl and carbamate moieties are orthogonal. Such a non-planar molecular geometry affects the way the molecules pack and crystal structure analyses revealed four general modes in which the molecules can associate in the solid-state, with some members of the series displaying isostructural relationships. The crystal structure of a well-known yet unreported O-thiocarbamate drug, Tolnaftate, is also reported. Additionally, Hirshfeld surface analysis was also performed on these compounds as well as several related O-thiocarbamates in the literature.

Keywords

crystal engineering approach
API
supramolecular chemistry
mechanochemistry
solution synthesis
thiocarbamates

Supplementary materials

Title
Description
Actions
Title
ESI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.