A Nonconjugated Radical Polymer with Stable Red Luminescence in Solid State

07 September 2020, Version 1

Abstract

Luminescent organic radicals have attracted much attention due to its distinctive open-shell structure and all-in-one properties on optoelectronics, electronics, and magnetics. However, organic radicals are usually instable and only very limited stable structures with π-radicals can exhibit luminescent property in the isolated state, most of which originate from the family of triphenylmethyl derivatives. Here, we report an unusual radical luminescence phenomenon that nonconjugated radical polymer can readily emits red luminescence at ~635 nm in the solid state. A traditional luminescence quencher, 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), was turned into a red chromophore when grafted onto a polymer backbone. Experimental data confirms the emission is associated with the nitroxide radicals and is also affected by the packing of polymer. As a proof of concept, a biomedical application in intracellular ascorbic acid visualization is demonstrated. This work discloses a novel class of luminescent radicals and provides a distinctive and simple pathway for stable radical luminescence.

Keywords

Luminescent Materials
Radical
Polymer
Nonconjugation
Aggregation-induced Emission

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.