Discovery of a Two-Dimensional Type I Superionic Conductor

24 August 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Type I superionic conductors (e.g., AgI, Ag2Se, etc.) are defined by an abrupt transition to the superionic state and have so far been found exclusively in 3D crystal structures. Here, we reveal a new 2D type I superionic conductor, α-KAg3Se2 by total scattering techniques and complementary simulations. Quasi-elastic neutron scattering (QENS) from the high temperature superionic phase match a simple Fickian diffusion mechanism with a diffusion coefficient of ~10-5 cm2 s-1 between 710 and 740 K. Ab initio molecular dynamics simulations confirm that the mobile Ag+ ions are confined to 4 Å thick layers, in addition to reproducing the experimental diffusion coefficient from QENS and the local structure obtained from X-ray powder pair-distribution-function analysis. Finally, chemical substitutions suggest that the nature of alkali metal ions comprising the charge-balancing layers can facilitate or inhibit the phase transition temperature.

Keywords

Superionic Conduction
2D
Quasielastic Neutron ScatteringDiffusion
AIMD calculations
Pair Distribution Function Analysis

Supplementary materials

Title
Description
Actions
Title
S1 KAg3Se2 AIMD 800K
Description
Actions
Title
SI KAg3Se2 QENS Final
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.