Abstract
Protein conjugates are valuable tools to create therapeutics, such as antibody-drug conjugates, or to study biological processes. Despite a number of protein conjugation strategies having been developed over recent years, the ability to modify one specific amino acid on a protein in the presence of other side chains with similar reactivity remains a challenge. We used the reaction between a monosubstituted cyclopropenone (CPO) probe and the 1,2-aminothiol of an N-terminal cysteine to give a stable 1,4-thiazepa-5-none linkage under mild, biocompatible conditions. The method relies on the ability of cyclopropenones to ring-open after sequential sulfhydryl and α-amine conjugation to be truly specific for N-terminal cysteine. We show that our CPO probes selectively label N-terminal cysteine containing peptides and proteins even in the presence of internal, solvent-exposed cysteines, which can be subsequently modified by using conventional cysteine modification reagents. The ability to distinguish and specifically target N-terminal cysteine residues on a protein will facilitate the construction of elaborate multi-labelled bioconjugates.