Quantum Metrics for Continuous Shape Measures of Molecules

25 August 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The field of continuous molecular shape and symmetry (dis)similarity quantifiers habitually called measures (specifically continuous shape measures - CShM or continuous symmetry measures - CSM) is obfuscated by the combinatorial numerical algorithms used in the field which restricts the applicability to the molecules containing up to twenty equivalent atoms. In the present paper we analyze this problem using various tools of classical probability theory as well as of one-particle and many-particle quantum mechanics. Applying these allows us to lift the combinatorial restriction and to identify the adequate renumbering of atoms (vertices) without considering all N! permutations of an N-vertex set so that in the end purely geometric molecular shape (dis)similarity quantifier can be defined. Developed methods can be easily implemented in the relevant computer code.

Keywords

Continuous Shape Measures
combinatorial restriction, lift of

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.