Hydrazine Formation via NiIII-NH2 Radical Coupling in Ni-Mediated Ammonia Oxidation

25 August 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Given the diverse mechanistic possibilities for the overall 6e-/6H+ transformation of ammonia to dinitrogen, identification of M(NHx) intermediates involved in N–N bond formation is a central mechanistic challenge. In analogy to water oxidation mechanisms, which widely invoke metal oxo intermediates, metal imide and nitride intermediates have commonly been proposed for ammonia oxidation, and stoichiometric demonstration of N–N bond formation from these metal-ligand multiply bonded species is well-precedented. In contrast, while the homocoupling of M–NH2 species to form hydrazine has been hypothesized as the key N–N bond forming step in certain molecular ammonia oxidation systems, well-defined examples of this transformation from M–NH2 complexes are essentially without precedent. This work reports the first example of net ammonia oxidation mediated by a molecular Ni species, a transformation carried out via formal NiII/NiIII oxidation states. The available data are consistent with a NiIII–NH2 intermediate featuring substantial spin at N undergoing N–N bond formation to generate a NiII2(N2H4) complex. Additional and structurally unusual Nix(NyHz) species – including a Ni2(trans-N2H2) complex – are characterized and studied as intermediates in the Ni-mediated ammonia oxidation cycle described herein.

Keywords

ammonia oxidation

Supplementary materials

Title
Description
Actions
Title
NiNH2-SI-ChemRxiv
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.