Trapping an Elusive Fe(IV)-Superoxo Intermediate Inside a Self-Assembled Nanocage at Room Temperature

19 August 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Natural metalloenzymes stabilize reactive intermediates through specific metal-substrate interactions in protein confinement. Using the structural blueprint of enzyme pockets it is possible to trap elusive intermediates inside molecular cavities. Here we demonstrate room temperature trapping of a rare yet stable Fe(IV)-superoxo [FeIV(O2)-bTAML] intermediate subsequent to dioxygen binding at the Fe(III) site of a (Et4N)2[FeIII(Cl)(bTAML)] catalyst confined inside the hydrophobic interior of a water-soluble Pd6L412+ nanocage.

Keywords

O2 Activation
Fe(IV)-superoxo complex
host-guest complexation

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.