Rheological Investigation of Collagen, Fibrinogen, and Thrombin Solutions for Drop-on-Demand 3D Bioprinting

13 August 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Collagen, fibrinogen, and thrombin proteins in aqueous buffer solutions are widely used as precursors of natural biopolymers for three-dimensional (3D) bioprinting applications. The proteins are sourced from animals and their quality may vary from batch to batch, inducing differences in the rheological properties of such solutions. In this work, we investigate the rheological response of collagen, fibrinogen, and thrombin protein solutions in bulk and at the solution/air interface. Interfacial rheological measurements show that fibrous collagen, fibrinogen and globular thrombin proteins adsorb and aggregate at the solution/air interface, forming a viscoelastic solid film at the interface. The viscoelastic film corrupts the bulk rheological measurements in rotational rheometers by contributing to an apparent yield stress, which increases the apparent bulk viscosity up to shear rates as high as 1000 s-1. The addition of a non-ionic surfactant, such as polysorbate 80 (PS80) in small amounts between 0.001 and 0.1 v/v%, prevents the formation of the interfacial layer, allowing the estimation of true bulk viscosity and viscoelastic properties of the solutions. The estimation of viscosity not only helps in identifying those protein solutions that are potentially printable with drop-on-demand (DOD) inkjet printing but also detects inconsistencies in flow behavior among the batches.

Keywords

Rheology
Collagen
Fibrinogen
Thrombin
bioprinting
protein

Supplementary materials

Title
Description
Actions
Title
Manuscript
Description
Actions
Title
ESI - Rheological investigation of collagen, fibrinogen, and thrombin solutions for drop-on-demand 3D bioprinting (1)
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.