Behavior of Protein-Inspired Synthetic Random Heteropolymers

13 August 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Random heteropolymers (RHPs) are an interesting class of materials useful in many theories and applications. While previous studies typically focused on simplified RHP systems, here we explore a more complex scenario inspired by highly heterogeneous molecules like proteins. Our system consists of four monomers mimicking different classes of amino acids. Using Molecular Dynamics simulations and Small-Angle X-Ray Scattering, we explore dynamical and structural features of these RHPs in solution. Our results show the RHPs assemble with heterogeneous interfaces reminiscent of protein surfaces. The polymer backbones appear frozen at room temperature on the nano- to micro-second timescale with molten globule morphology, albeit their conformational space has multiple metastable conformations for a given sequence, drawing comparison to Intrinsically Disordered Proteins. Local connectivity and chemistry are also shown to have substantial impact on polymer solvation. The work presented here indicates that RHPs share similarities with proteins to be leveraged in bio-mimetic and bio-inspired applications.

Keywords

heteropolymer
random heteropolymer
molecular dynamics
single chain

Supplementary materials

Title
Description
Actions
Title
SI rhp paper August 2020
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.