Long-range Stacking Effects of Nucleobases in Charge Transfer

10 August 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Base-stacked structure is an important feature of DNA molecules. Previous studies on the stacking effect concerning DNA-mediated hole transfer have revealed the influence of neighboring bases on onsite energies. But the neighboring base effect acts only in a short-distance. Besides it, a long-range (longer than three base pairs) stacking effect called squeezing effect in this paper has not yet been reported. Such a squeezing effect causes the bases near the middle of a sequence consisting of same type base pairs have lower onsite energies than the bases near the terminals. We predict it by H ̈uckelanalysis in an unconventional way and confirmed it by semiempirical calculations combinated with molecular dynamics simulations. The results suggest that in order to obtain a reasonable onsite energy map when study charge transfer on DNA, the stacking effects should be considered in a long-distance as possible. The consideration of squeezing effect also provides a new suggestion on the driving force of fluctuation-assisted DNA charge transfer. The method used to calculate the onsite energies in abase stack can be generalized to other π-stacked systems.

Keywords

DNA charge transfer
pi-stacking effect

Supplementary materials

Title
Description
Actions
Title
si
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.