Ultrafast Pump-Probe Spectroscopy of Finite-Sized Neutral Iron Oxide Clusters

10 August 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Neutral iron oxide clusters (FenOm, n,m ≤ 16) are produced in a laser vaporization source using O2gas seeded in He. The neutral clusters are ionized with a sequence of femtosecond laser pulses and detected using time-of-flight mass spectrometry. Small clusters are confirmed to be most prominant in the stoichiometric (n = m) distribution, with m = n + 1 clusters observed above n = 4. Pump-probe spectroscopy is employed to study the dynamics of an electron transfer from an oxygen orbital to an iron nonbonding orbital of iron oxide clusters that is driven by absorption of a 400 nm photon. A bifurcation of the initial wavepacket occurs, where a femtosecond component is attributed to electron relaxation assisted through internuclear vibrational relaxation, and a slow relaxation shows the formation of a bound excited state. The lifetime and relative ratio of the two pathways depends on both the cluster size and iron oxidation state. The femtosecond lifetime decreases with increased cluster size until a saturation timescale is achieved at n > 5. The relative population of the long-lived excited state decreases with cluster size and suggests that the excited electron remains on the Fe atom for > 20 ps.

Keywords

pump probe spectroscopy
iron oxide
cluster
dynamics
ultrafast

Supplementary materials

Title
Description
Actions
Title
Sayres FeO SI ChmRxiv
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.