Hydrodechlorination of Dichloromethane by a Metal-Free Triazole-Porphyrin Electrocatalyst: Demonstration of Main-Group Element Electrocatalysis

05 August 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In this work, the electrocatalytic reduction of dichloromethane (CH2Cl2) into hydrocarbons involving a main group element-based molecular triazole-porphyrin electrocatalyst H2PorT8 is reported. This catalyst converted CH2Cl2 in acetonitrile to various hydrocarbons (methane, ethane, and ethylene) with a Faradaic efficiency of 70% and current density of –13 mA/cm2 at a potential of –2.2 V vs. Fc/Fc+ using water as a proton source. The findings of this study and its mechanistic interpretations demonstrated that H2PorT8 was an efficient and stable catalyst for the hydrodechlorination of CH2Cl2 and that main group catalysts could be potentially used for exploring new catalytic reaction mechanisms.

Keywords

Triazole
Hydrodehalogenation
Main-Group Elements
organocatalysis
Homogeneous Catalysis

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.