Accelerated Computation of Free Energy Profile at Ab Initio QM/MM Accuracy via a Semi-Empirical Reference-Potential. III. Gaussian Smoothing on Density-of-States

29 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Calculations of free energy profile, aka potential of mean force (PMF), along a chosen collective variable (CV) are now routinely applied to the studies of chemical processes, such as enzymatic reactions and chemical reactions in condensed phases. However, if the ab initio QM/MM level of accuracy is required for the PMF, it can be formidably expensive even with the most advanced enhanced sampling methods, such as umbrella sampling. To ameliorate this difficulty, we developed a novel method for the computation of free energy profile based on the reference-potential method recently, in which a low-level reference Hamiltonian is employed for phase space sampling and the free energy profile can be corrected to the level of interest (the target Hamiltonian) by energy reweighting in a nonparametric way. However, when the reference Hamiltonian is very different from the target Hamiltonian, the calculated ensemble averages, including the PMF, often suffer from numerical instability, which mainly comes from the overestimation of the density-of-states (DoS) in the low-energy region. Stochastic samplings of these low-energy configurations are rare events. If a low-energy configuration has been sampled with a small sample size N, the probability of visiting this energy region is ~ 1/N (shall be exactly 1/N for a single ensemble), which can be orders-of-magnitude larger than the actual DoS. In this work, an assumption of Gaussian distribution is applied to the DoS in each CV bin, and the weight of each configuration is rescaled according to the accumulated DoS. The results show that this smoothing process can remarkably reduce the ruggedness of the PMF and increase the reliability of the reference-potential method.

Keywords

free energy
density-of-states
reference-potential
QM/MM
Gaussian smoothing

Supplementary materials

Title
Description
Actions
Title
SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.