Repurposing Nonnucleoside Antivirals Against SARS-CoV2 NSP12 (RNA Dependent RNA Polymerase) and Identification of Domain Specific Interactions

27 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The pandemic of SARS-CoV-2 has necessitated expedited research efforts towards finding potential antiviral targets and drug development measures. While new drug discovery is time consuming, drug repurposing has been a promising area for elaborate virtual screening and identification of existing FDA approved drugs that could possibly be used for targeting against functions of various proteins of SARS-CoV-2 virus. RNA dependent RNA polymerase (RdRp) is an important enzyme for the virus that mediates replication of the viral RNA. Inhibition of RdRp could inhibit viral RNA replication and thus new virus particle production. Here, we screened non-nucleoside antivirals and found three out of them to be strongest in binding to RdRp. We propose these three drugs as potential RdRp inhibitors based on the site of binding.

Keywords

SARS-CoV2
RdRp
NSP12
drug repurposing

Supplementary materials

Title
Description
Actions
Title
Supplementary Figures
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.