Silicon Photomultipliers as a Low-Cost Fluorescence Detector for Capillary Electrophoresis

21 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Capillary electrophoresis (CE) is a highly efficient separation method capable of handling small sample volumes (~pL) and low (~yoctomole) detection limits, and as such is ideal for applications that require high sensitivity such as single-cell analysis. Low-cost CE instrumentation is quickly expanding but low-cost, open-source fluorescence detectors with ultra-sensitive detection limits are lacking. Silicon photomultipliers (SiPM) are inexpensive, low-footprint detectors with the potential to fill the role as a detector when cost, size, and customization are important. In this work we demonstrate the use of a SiPM in CE with zeptomolar detection limits and a dynamic range spanning five orders of magnitude, comparable to photomultiplier detectors. We characterize the performance of the SiPM as a highly sensitive detector by measuring enzyme activity in single cells. This simple, small footprint, and low-cost (<$130) light detection circuit will be beneficial for open-source, portable, and budget friendly instrumentation requiring high sensitivity.

Keywords

Silicon photomultipliers
capillary electrophoresis
chemical cytometry
single-cell analysis

Supplementary materials

Title
Description
Actions
Title
Supplemental Information
Description
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.