Two-Step Machine Learning Enables Optimized Nanoparticle Synthesis

21 July 2020, Version 1

Abstract

In materials science, the discovery of recipes that yield nanomaterials with defined optical properties is costly and time-consuming. In this study, we present a two-step framework for a machine learning driven high-throughput microfluidic platform to rapidly produce silver nanoparticles with a desired absorbance spectrum. Combining a Gaussian Process based Bayesian Optimization (BO) with a Deep Neural Network (DNN), the algorithmic framework is able to converge towards the target spectrum after sampling 120 conditions. Once the dataset is large enough to train the DNN with sufficient accuracy in the region of the target spectrum, the DNN is used to predict the colour palette accessible with the reaction synthesis. While remaining interpretable by humans, the proposed framework efficiently optimizes the nanomaterial synthesis, and can extract fundamental knowledge of the relationship between chemical composition and optical properties, such as the role of each reactant on the shape and amplitude of the absorbance spectrum.

Keywords

machine learning
high-throughput
Bayesian Optimization
Deep Neural Network
nanomaterial synthesis

Supplementary materials

Title
Description
Actions
Title
SupplementaryMaterials
Description
Actions
Title
Manuscript
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.