From Design to in Vivo Active Organometallic-Containing Antimycotic Agents

20 July 2020, Version 1

Abstract

Fungal infections are an alarming global problem, most importantly for immunocompromised patients in a hospital environment. The appearance of multidrug resistance in several fungal species is a strong indication that alternative treatments are required. Azoles represent the mainstay of antifungal drugs, and their mode of action involves the binding mode of these molecules to the fungal lanosterol 14α-demethylase target enzyme. In this work, by rational design, we have prepared and characterized four novel organometallic derivatives of the frontline antifungal drug fluconazole (1a-4a). All compounds showed excellent in vitro activity against the yeast C. robusta, clearly surpassing the progenitor organic drug fluconazole. As anticipated, due to the presence of the ferrocenyl moiety in 1a-4a, a modest increase in ROS generation was observed on C. robusta upon treatment. Very importantly, enzyme inhibition and chemogenetic profiling demonstrated that lanosterol 14α-demethylase was the main target of the most active compound of the series, (N-(ferrocenylmethyl)-2-(2,4-difluorophenyl)-2-hydroxy-N-methyl-3-(1H-1,2,4-triazol-1-yl)propan-1-aminium chloride, 2a). Transmission electron microscopy (TEM) studies suggested that 2a induced a loss in wall integrity as well as intracellular features ascribable to late apoptosis or necrosis. The impressive activity of 2a was further confirmed on clinical isolates, where antimycotic potency up to 400 times higher than fluconazole was observed. Also, 2a showed activity towards azole-resistant strains. This finding is very interesting since the target of 2a is primarily the same as that of fluconazole, emphasizing the role played by the organometallic moiety. In vivo experiments conducted with 2a at a dose of 10 mg/Kg in mice model of Candida infections, while not decreasing fungal burden in the kidney, reduced distal distribution to liver and brain and greatly improved the inflammatory pathology in the kidney and colon, compared to untreated mice.

Keywords

antifungal
Bioorganometallic Chemistry
Ferrocene
Medicinal Inorganic Chemistry
Metals in Medicine

Supplementary materials

Title
Description
Actions
Title
SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.