Computational Studies to Identify Potential Main Protease Inhibitors for SARS-CoV-2

13 July 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The Coronavirus pandemic has put the entire humanity in total shock and has forced the world to go under total lockdown. It is time for the entire scientific community across the globe to find a solution for this deadly and unseen enemy. In silico studies play a vital role in situations like this, as experimental studies are not feasible by all researchers particularly with relevance to BSL4 procedures. In this study, using the high resolution crystal structure of SARS-CoV-2 main protease (PDB: 5R82), we have identified molecules which can potentially inhibit the main protease (Mpro). We used a three-tier docking protocol making use of three different databases. We analysed the residues which are lying near the ligand binding pocket of the main protease structure and it shows a wide cavity, which can accommodate chemically diverse ligands, occupying different sub-pockets. Using the small fragment bound in the 5R82, we have identified several larger molecules whose functional groups make interactions with the active site residues covering. This study also presumably steers the structure determination of many ligand-main protease complexes using x- ray diffraction methods. These molecules can be used as ‘in silico leads’ and further be explored in the development of SARS-CoV-2 drugs.

Keywords

Molecular Docking Approaches
Main Protease Mpro
SARS-CoV-2

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.