Prioritization of Potential Drugs Targeting the SARS-CoV-2 Main Protease

09 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Since its outbreak in 2019, the acute respiratory syndrome caused by SARS-Cov-2 has become a severe global threat to human. The lack of effective drugs strongly limits the therapeutic treatment against this pandemic disease. Here we employed a computational approach to prioritize potential inhibitors that directly target the core enzyme of SARS-Cov-2, the main protease, which is responsible for processing the viral RNA-translated polyprotein into functional proteins for viral replication. Based on a large-scale screening of over 13, 000 drug-like molecules, we have identified the most potential drugs that may suffice drug repurposing for SARS-Cov-2. Importantly, the second top hit is Beclabuvir, a known replication inhibitor of hepatitis C virus (HCV), which is recently reported to inhibit SARS-Cov-2 as well. We also noted several neurotransmitter-related ligands among the top candidates, suggesting a novel molecular similarity between this respiratory syndrome and neural activities. Our approach not only provides a comprehensive list of prioritized drug candidates for SARS-Cov-2, but also reveals intriguing molecular patterns that are worth future explorations.

Keywords

SARS-Cov-2
drug repurposing
molecular docking
Beclabuvir
neurotransmitters

Supplementary materials

Title
Description
Actions
Title
tableS1
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.