Electrochemically Driven Desaturation of Carbonyl Compounds

02 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Electrochemical techniques have long been heralded for their innate sustainability as efficient methods for achieving redox reactions. Carbonyl desaturation, as a fundamental organic oxidation, is an oft-employed transformation to unlock adjacent reactivity. To date, the most reliable methods for achieving it have relied on transition metals (Pd/Cu) or stoichiometric reagents based on I, Br, Se, or S. Herein we report an operationally simple pathway to such structures from enol silanes and phosphates using electrons as the primary reagent. This electrochemically driven desaturation exhibits a broad scope across an array of carbonyl derivatives, is easily scalable (1-100g), and can be predictably implemented into synthetic pathways using experimentally or computationally derived NMR shifts. Mechanistic interrogation suggests a radical-based reaction pathway.

Keywords

alpha beta desaturation
electrochemistry

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.