SERS Background Imaging – a Versatile Tool Towards More Reliable SERS Analytics

02 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Surface-enhanced Raman scattering (SERS) is a highly selective and sensitive straightforward analytical method, which is however not yet established in routine analysis due to a lack of reliability and reproducibility. Here we utilise the broad SERS continuum background (SERS-BG) accompanying every SERS measurement as a versatile tool towards more reliable SERS analytics. We apply a heterogeneous gold SERS substrate immersed with an adenosine triphosphate solution to show that the integrated SERS-BG distinctly correlates with the intensity of the analyte signals in the SERS spectrum. Based on this relationship we introduce an easy-to-handle, automatable and more reliable SERS measurement procedure starting with fast and high-contrast imaging of the SERS substrate followed by hot spot localisation and recording of highly enhanced SERS spectra at the centre of the diffraction-limited spot. We further demonstrate the applicability of SERS-BG imaging by combining it with other optical modalities and electron microscopy to assess structure-property relationships. Additionally, we perform Monte-Carlo simulations to evaluate the sampling error in SERS experiments highlighting the advantages of our method over conventional SERS experiments.

Keywords

Surface enhanced raman scattering (SERS)
Hot Spots
Raman spectroscopy
SERS substrate evaluation
Multimodal Imaging
Optical Properties
Laser Scanning Microscopy
Monte Carlo simulations

Supplementary materials

Title
Description
Actions
Title
Ebersbach SERS-BG SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.